
RL-TR-95-163
Final Technical Report
September 1995

DIGITAL TEST GENERATION
USING MULTIPROCESSING

Syracuse University

Carlos R.P. Hartmann and Dennis C.Y. Shiau

?#**

^

 & H p. %.&.
5"*1 * xp™ Ä. r-;- .,•<«; $% ,-~ ,

fci-iauiLL'r,!
GCT 1 9 1995 I ?u

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

mmi m DTXi QUALITY INSPECTED 8

Rome Laboratory
Air Force Materiel Command

Griff iss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95- 163 has been reviewed and is approved for publication.

APPROVED:

WARREN H. DEBANY, JR., Ph.D., P.E.
Project Engineer

FOR THE COMMANDER: ^AAAAA^V ßtfU^T

JOHN J. BART
Chief Scientist, Reliability Sciences
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (ERDA) Griffiss AFB NY 13441. This will assist us in maintainin;

a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE f-orm Approved
OMB No. 0704-0188

^t!^^^" ta*^=°*^^rto^™ö°n»«^«öto»«riigBi hccr pa- response, ndudng the tfrrw for rnnewrx; nstruaxrs, searo™ enstro das si^~

f*0^0™01 nctJt*1a *AJOa*onefar reducngtrte Sxrden. to Washington Headquarta-s Servo«. Oracffi«. for rtormalion Oparations aroBaoorts. 1215 Jefferson

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE

September 1995
4. TTTLE AND SUBTITLE

DIGITAL TEST GENERATION USING MULTIPROCESSING

|a REPORT TYPE AND DATES COVERED

Final Mar 91 - Jun 92

a AUTHOR (S)

Carlos R.P. Hartmann and Dennis C.Y. Shiau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Syracuse University-
School of Computer & Information Science
Suite 4-116, CST
Syracuse NY 13244-4100

9. SPONSORING7MONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory (ERDA)
525 Brooks Rd
Griffiss AFB Ny 13441-4505

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS
C - F30602-91-D-0001,

Task 7
PE - 62702F
PR - 2338
TA - 01
WU - P8

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-163

Rome Laboratory Project Engineer: Warren H. Debany, Jr., Ph.D , P E /ERDA/
HIS) ^^C)-?Q??

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

1 3. ABSTRACT (Maxxrun 200 words)

12b. DISTRIBUTION CODE

The Sixteen valued Maximized Propagation Lowered Enumeration (SIMPLE) algorithm is
modified to execute efficiently within a parallel or multiprocessing environment.
SIMPLE was developed to generate test vectors for stuck-at faults in digital logic
circuits and executes on a scalar processor. Implementation of the multiprocessing
version was not completed, but simulations showed that speedup was nearly linear with
the number of processors for detectable and undetectable faults.

14. SUBJECT TERMS

Parallel processors, Multiprocessors, Fault detection,
Test generation. Digital 1o?ic circuits

15. NUMBER OF PAGES
60

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 7540-01 -280-5500

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCT.ASSTT-TF.ri

1& PRICE CODE

20. UMITATION OF ABSTRACT

J-i
Standard Form 298 ;Cev : s?>
Prescribed by ANSI S;a 135- ■ e
298-102

Contents

1 Introduction 1

2 Automatic Test Pattern Generation System 1

2.1 Input-Output Format and Data Structure 2

2.2 Construction of the Fault List 6

3 SIMPLE Algorithm 7

3.1 Introduction 7

3.2 Pre-processing Phase 11

3.2.1 Construction of Dominator Forest 11

3.2.2 Selection of pdcf 13

3.2.3 Token Assignment 16

3.3 Propagation Phase 16

3.4 Enumeration Phase 20

4 Parallel Version 23

5 Simulation Results 24

6 Discussion 25

Appendices 39

A Construction of Deterministic Test Cubes 39

A.l Forward Implication 39

A.2 Backward Implication 40

B Measure for Controllability and Observability 42

B.l Controllability 42

B.2 Observability 44

List of Tables

1 Faults comprising list Cr 7

2 Table 1 of ISCAS '85 benchmark circuit descriptions 8

3 AND Table 9

4 NOT Table 9

5 XOR Table 10

6 Token assignment for net 3 s — a — 0 in Fig. 4 16

7 Observability for the circuit in Fig. 4 19

8 Controllability for the circuit in Fig. 4 22

9 Experimental results for the ISCAS '85 Benchmark Circuits 24

10 Backward Implication for a 2-input AND gate 41

11 Rules to calculate the controllability in SCOAP 44

List of Figures

l Procedure for test generation 2

2 ISCAS '85 Benchmark Circuit Cl7.isc. 3

5 3 Net numbers assigned by J-H Translator for cl7.isc

4 An example circuit 12

14 5 Dominator forest for circuit of Fig. 4

6 (A) Fictitious gate. (B) Fictitious gate for FOBs. (C) Fictitious gate

for net 3 s-a-0 in circuit of Fig. 4 15

27 7 CM-5 Simulation Result for FOB net (167-^246) s-a-l in cc432. . . .

8 CM-5 Simulation Result for FOB net (216->246) s-a-l in cc432. . . . 28

9 CM-5 Simulation Result for FOB net (237-^246) s-a-l in cc432. . . . 29

10 CM-5 Simulation Result for FOB net (1383-^1632) s-a-l in cc2670. . 30

11 CM-5 Simulation Result for FOB net (1337-^1633) s-a-l in cc2670. . 31

12 CM-5 Simulation Result for FOS net 1942 s-a-0 in cc2670. . . . 32

13 CM-5 Simulation Result for FOB net (137^1859) s-a-l in cc5315. . . 33

14 CM-5 Simulation Result for FOB net (1752^1859) s-a-l in cc5315. . 34

' 15 CM-5 Simulation Result for FOB net (2590-+3055) s-a-l in cc5315. . 35

16 CM-5 Simulation Result for FOB net (2415^3137) s-a-l in cc7552. . 36

17 CM-5 Simulation Result for FOB net (2415-^3142) s-a-l in cc7552. . 37

18 CM-5 Simulation Result for FOB net (3786-^3866) s-a-l in cc7552. . 38

19 Gate decomposition 43

Accesion For 1

NTiS CRA&I |^
DTIC TAB D
Unannounced Q
Justification

By.
Distribution /

Availability Codes

Dist
Avaii and/or

Special

iii M _

1 Introduction

The generation of test patterns for combinational circuits has been long recognized

by researchers as a well-defined mathematical problem that belongs to the class of

NP-complete problems [10, 13]. Several Automatic Test Pattern Generation (ATPG)

algorithms for detecting stuck-at faults in combinational circuits exist in the literature

[5, 7, 9, 11, 15, 17, 18, 20]. SIMPLE, an ATPG algorithm based on a 16-valued logic

system, is proposed in [2]. This algorithm introduces some novel approaches to making

test generation more efficient.

Two prototype implementations of SIMPLE were developed in C. The first pro-

gram is written for a sequential architecture computer, and the other for parallel.

In Section 2, we describe our test pattern generation system. In Section 3 a

short description of SIMPLE is given for completeness. The strategy used in the

implementation of this parallel version of SIMPLE is described in Section 4. In

Section 5 we give simulation results, and discuss them in Section 6.

2 Automatic Test Pattern Generation System

Our Automatic Test Pattern Generation (ATPG) System constructs test patterns

to detect all detectable single stuck-at faults in a given combinational circuit, and

identifies the undetectable faults, that is, single stuck-at faults for which no test

exists. Since we are interested only in constructing test patterns for single stuck-

at faults, it is understood that a "fault" is a "single stuck-at fault". A stuck-at-rc,

x G {0,1}, will be denoted by s — a — x.

Given a circuit, an reduced fault list, Cr, is generated. Each fault in Cr is given

to our test pattern generation algorithm (SIMPLE) which either constructs a test

pattern to detect the given fault, or identifies that no such a pattern exists. After all

the faults in list £,. are given to SIMPLE, the system calculates the fault coverage

and produces a fault dictionary. Fig. 1 shows a block diagram for our ATPG system.

Logic Circuit Description

'r

Fault Modeling and Reduction

" ^
Test Pattern Generation

V

Fault Coverage Evaluation

"
Fault Dictionary Production

Figure 1: Procedure for test generation.

2.1 Input-Output Format and Data Structure

The ISCAS '85 benchmark circuits [4] are used as our test data. The ISCAS '85

benchmark circuits are ten combinational networks provided to researchers at the 1985

International Symposium on Circuits and Systems to be used as data for comparison

of the performance of different ATPG systems. The ISCAS '85 netlist format was

distributed on magnetic tape along with a FORTRAN translator that would generate

netlists in a few different formats. Although a new translator is now available which

produces a netlist in a format that is easier to be read, we use a translator, written

by Dong-Liang Jan and Kuo-Kuei Ho (J-H Translator) [14], which is more suitable

for our program.

Fig. 2 shows one of the ISCAS '85 benchmark circuits, known as "cl7." The

original format for this circuit is given below:

ISCAS ;85 netlist format:

1 lgat inpt 1 0 >sal

"\ 22
i ^x 10 v-\ pn

Y) JO • ru

3 < -ff 20 1 s

r~~\ i6
» 2 o- 14

9^ 21
~"\ 23

->H i r"l a pn KJ • rAJ

6 '

15

7 p w

Figure 2: ISCAS '85 Benchmark Circuit Cl7.isc.

2 2gat inpt 1 0 >sal

3 3gat inpt 2 0 >sa0 >sal

8 8fan from 3gat >sal

9 9fan from 3gat >sal

6 6gat inpt 1 0 >sal

7 7gat inpt 1 0 >sal

10 lOgat nand 1 2 >sal

1 8

11 llgat nand 2 2 >saO >sal

9 6

14 14fan from llgat >sal

15 15fan from llgat >sal

16 16gat nand 2 2 >saO >sal

2 14

20 20fan from 16gat >sal

21 21fan from 16gat >sal

3

19

15

22

10

23

21

19gat nand 1 2 >sal

7

22gat nand 0 2 >sa0 >sal

20

23gat nand 0 2 >sa0 >sal

19

The format given by the J-H Translator which is the input format for our programs

is as follows:

For an m-input circuit, where m < NPI and NPI € {100,1000}, the primary

inputs (Pis) are numbered from 1 to m. The output of gates are numbered using a

leveling rule. That is, the number assigned to the output of a gate is always greater

than the number(s) assigned to its input(s). Also, the gate number (G) is always the

same as the number associated with its output net. The nets which are output of

gates are numbered with NPI + l,NPI + 2,..., NPI + M, where M is the number of

gates in the circuit. The first line in the format indicates how many Pis the circuit

has. Thus, the first line is:

777 PI

A gate whose input are numbered nu n2,..., ns is indicated in this format:

??! n2 ... ns type-of.gate

Gates types are AND, NAND, OR, NOR, XOR, XNOR, BUFFER, and NOT. If net

n is a primary output (PO), it is indicated by

77 PO

The output generated by the J-H Translator for the circuit in Fig. 2 is as follows:

5 pi

1 3 nand

101
105
- PO

<, 103

<i 102

106
-• PO

104

Figure 3: Net numbers assigned by J-H Translator for cl7.isc.

3 4 nand

2 102 nand

102 5 nand

101 103 nand

105 po

103 104 nand

106 po

Fig. 3 gives the circuit of Fig. 2 with the net numbers assigned by the J-H Trans-

lator.

While the original format gives the circuit description and a fault list, the format

given by the J-H Translator gives only the circuit description. Thus we must create

a fault list. In this list a fault is identified as follows:

• n FOS s — a — x

identifies the fault net n s — a — x, where net n is a fanout stem.

• n PO s — a — x

identifies the fault net n s — a — x, where net n is a PO.

Now, let net nx be a PI or the output of gate G\ which is not a PO. Furthermore,

assume that net ri\ is connected to an input of gate G2 whose output is net n^-

• n\ n2 s — a — x

identifies the fault:

1. net ft! s — a — x if net n\ is not a fanout stem.

2. fanout branch connecting net ri\ to gate Gi s — a — x if net n\ is a fanout

stem.

2.2 Construction of the Fault List

In general we want to construct a test set that detects all possible single stuck-at faults

in a combinational circuit. In a circuit, C, with n signal lines there are 2n possible

single stuck-at faults. Thus the initial fault list, £, may contain 2n faults. However,

we can reduce the cardinality of C based on the functional equivalence concept.

Let C be a circuit that realizes a function Z(X). In the presence of a fault a (ß)

this circuit realizes Za(X)(Zp(X)).

Definition: Two faults a and ß are said to be functional equivalent if and only

if Za(X) = Zß(X).

To decide if two faults are equivalent may be very time-consuming. However,

some equivalent faults can be easily identified. To reduce the cardinality of C we use

the procedure proposed in [8] which identifies equivalent faults based on gate fault

equivalence only. This procedure is easily to be implemented and its time complexity

is O(n), but it does not identify all the equivalent faults.

Before indicating which faults belong to the reduced fault list £r, we introduce

the following definition:

Stuck-at faults Type of logic line in logic model

s — a — 1 Every input of multiple-input AND or NAND gates

s — a — 0 Every input of multiple-input OR or NOR gates

s — a — 0,s — a — 1 Every input of multiple-input components

that are not AND, OR, NAND, or NOR gates

s — a — 0, s — a — 1 Every logic line that is a FOS

5 — a — 0,5 — a — 1 Every logic line that is a PO of type II

Table 1: Faults comprising list CT.

Definition: A PO of type I is a PO which is directly connected to a FOS or

connected to a fanout stem through single-input gates only. A PO of type II is a PO

which is not of type I.

All single permanent stuck-at faults specified in Table 1 belong to £r,

Table 2 gives the number of faults in Cr for the benchmark circuits [4], where the

faults in Cr were identified using the above procedure.

3 SIMPLE Algorithm

3.1 Introduction

In this section we give a concise description of SIMPLE (Sixteen valued, Maximized

Propagation Lowered Enumeration approach to test generation) [2], for detecting

single stuck-at-faults in combinational circuits that contain NOT, AND, NAND, OR,

NOR, XOR and XNOR gates. This algorithm is based on a 16-valued logic system and

introduces some novel approaches to making test pattern generation more efficient.

Test generation involves considering the value of a net in the good and the faulty

circuit. This can be done by representing the value of a net as an ordered pair (bg, bf)

where bg(bj) is the value of the net in the good (faulty) circuit [16]. Thus the value of

a net is one of the elements of the set U = {(0,0), (0,1), (1, 0), (1,1)}. In the process

of generating tests, it might not be possible to uniquely specify the value of a net as

7

Circuit

Name

Circuit

Function

C432 Priority Decoder

C4991 ECAT

C880 ALU and Control

C13551 ECAT

C1908 ECAT

C2670 ALU and Control

C3540 ALU and Control

C5315 ALU and Selector

C6288 16-bit Multiplier

C7552 ALU and Control

Total

Gates

160 (18 EXOR)

202 (104 EXOR)

383

546

880

1193

1669

2307

2406

3512

Input

Lines

36

41

60

41

33

233

50

178

32

207

Output

Lines

32

26

32

25

140

22

123

32

108

Cardinality of

518

758

940

1574

1879

2641

3428

5248

7744

7438

Circuits C499 and C1355 are functionally equivalent. All EXOR

gates of C499 have been expanded into their 4-NAND gate equiva-

lents in C1355.

Table 2: Table 1 of ISCAS '85 benchmark circuit descriptions.

AND 0 1 D D

0 0 0 0 0

1 0 1 D D

D 0 D D 0

D 0 D 0 D

Table 3: AND Table.

Variable 0 1 D D

Complement 1 0 D D

Table 4: NOT Table.

one of the elements of U. However, we may already know that a net cannot assume

one or more of these values. We incorporate this information by defining the value of

a net as one of the 16 subsets of U. We denote these 16 sets as (ft, 0, 1, D, D, 0/1,

0/D, 1/D, 0/D, 1/D, D/D, 0/1/D, 0/1/D, 0/D/D, 1/D/D, and 0/1/D/D

where 0= {(0,0)}, 1= {(1,1)}, D= {(1,0)}, D= {(0,1)} and "/" denotes set union.

Note that U =0/1/D/D. The value (ft needs to be included to reflect the situation

when two or more constraints require disjoint values on a net. For example, if at some

step of the algorithm a net has the value 0/1/D, then this net cannot have the value

Z), either because this value will desensitize the path that the algorithm is trying to

sensitize, or because it is inconsistent with the assignment of the Pis. These 16 values

are equivalent to the elements of the logic system developed by Akers [1] to provide

a tool for test generation. Tables 3, 4, and 5 represent the AND, NOT, and XOR

functions in our 16-valued system for the values 0, 1, D, and D. The complete table

for all the 15 non-</> values can be easily constructed from the given tables by using

the set union operation. The tables for all other logic functions can be obtained from

these three tables. Note that any logic function with (ft as one of its arguments will

yield (ft as a result.

Using this notation we define a sensitized net as one whose value is either D,

9

XOR 0 1 D D

0 0 1 D D

1 1 0 D D

D D D 0 1

D D D 1 0

Table 5: XOR Table.

D, or D/D. Furthermore, if all the nets along a path in the circuit are sensitized,

then the path is said to be sensitized. This 16-valued system exploits the linearity

of XOR/XNOR gates during test generation. It also allows us to characterize all

restrictions that are imposed by a fault, and the particular circuit path chosen m

order to propagate its effect.

There are three distinct phases in the algorithm presented here:

(i) Pre-processing phase (§3.2). In this phase we construct a set of trees based on

the interdependence of circuit nets. Among other things, this forest will be used to

easily identify which circuit nets must be sensitized by any test.

(ii) Propagation phase (§3.3). In this phase we deliberately sensitize a single

path from the fault site to a PO and find all the resulting deterministic forward and

backward implications. In the process other paths may be sensitized. Path selection

is the only choice made in this phase—implications are based on all the constraints

that must be satisfied in order to sensitize the chosen path. This is possible because

of the completeness of the 16-valued system and the use of deterministic implication

rules.

(Hi) Enumeration phase (§3.4). In general, the test cube constructed by the

propagation phase will not yield a test—particularly because no arbitrary choices

were made other than the path chosen to be sensitized. Thus there may be gates

whose input net values contain combinations capable of desensitizing the chosen path.

In this phase we use an enumeration procedure to select values for the Pis so that

such combinations can never occur.

10

To illustrate the above phases of our algorithm we will construct a test pattern

for the fault net 3 s — a — 0 in the circuit of Fig. 4.

3.2 Pre-processing Phase

3.2.1 Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to be detected

was first highlighted by Akers [1] and later by Fujiwara and Shimono [9]. As pointed

out in TOPS [15], the concept of graph dominators [21] can be used to identify the

nets which must be sensitized to detect a fault. In the context of test generation we

term the set of dominators of a net m as the set of all nets in the circuit which lie

on every path from net m to any PO. By definition, net m is a dominator of itself;

however, for ease of notation we define D(m) as the set of all dominators of ra except

m itself. To account for multiple-output circuits the concept of a dominator tree can

be extended to that of a forest. We present here a procedure to construct this forest

for a given circuit.

We construct a set of trees such that every signal line of the circuit corresponds to

a node in one of the trees in the forest. We start by creating as many trees as there

are POs, such that each PO corresponds to a root of a tree. However, new trees may

be created during the procedure. Thereafter, each node which has not been marked

as a leaf is inspected and the tree construction is continued as follows:

(i) If the node m; being considered corresponds to the output line of a logic gate

Gi in the circuit, then every input line of G{ becomes a child of this node m,-. If the

input line is a PI, then it is marked as a PI leaf. If the input line is a FOB, then it

is marked as a FOB leaf.

(ii) If the node m; being inspected is a FOS, then wait until all the FOBs corre-

sponding to this FOS have been marked as FOB leaves. Find the immediate ancestor

of all these FOB leaves by traversing the tree(s) from these leaves to the root(s) of

the tree(s). The necessary and sufficient condition for these FOB leaves to have a

11

Figure 4: An example circuit.

12

common ancestor is that they belong to the same tree. If such an ancestor exists,

then make ra; a child of this ancestor node. If it does not, then start a new tree with

m; as a root. In either case, mark m; as an FOS node—if it is also a PI, then it must

be marked as a PI leaf also.

The above procedure is continued until every line of the circuit becomes a node

in some tree of the forest.

The root of any tree in the constructed forest is either a PO or a FOS. If any tree

has a single node, then this node must correspond to a PI which is also a FOS. The

set D(m) contains all the nodes encountered when traversing the tree (in which m is

a node) from m to the root.

The dominator forest for the circuit in Fig. 4 is shown in Fig. 5.

Recall that FOBs are not numbered in our description of the circuit. In the

dominator forest they are identified by the number associated with its corresponding

FOS followed by a "B" (for branch).

3.2.2 Selection of pdcf

The selection of the primitive J9-cube of failure (pdcf) in DALG [18] may involve

arbitrary choices which can result in mistaken decisions causing costly backtracking.

We avoid this problem by introducing a fictitious gate Gf at the site of the fault. If

the fault is at net n, then we introduce Gf between net n and a newly created net nj

as shown in Fig. 6A. We now connect net n/ to all signal lines which were previously

connected to net n. If the fault site is a FOB which is identified by net n and net

ni, then the Gf is inserted in this FOB as shown in Fig. 6B. Accordingly, the unique

pdcf depends only on the kind of stuck-at fault.

n n f

fault site s-a-0 1 D

fault site s-a-1 0 D

Thus in our example we will modify the circuit in Fig. 4 to include the gate shown

in Fig. 6C.

13

KEY: lJ O LiJ (®)
Fanout Stem

Fanout Branch

Primary Input

e
lBYi !3B\\ (3BX\ (AB

Figure 5: Dominator forest for circuit of Fig. 4.

14

(A)

nf

(B)
GATE

nf

GATE

• • •

(C)

• • •

3 *\ 3f JG^
f • • •

Figure 6: (A) Fictitious gate. (B) Fictitious gate for FOBs. (C) Fictitious gate for

net 3 s-a-0 in circuit of Fig. 4.

15

Nets with

TRUE Token

Nets with

FALSE Token

3/, 101, 102, 103, 104, 105, 106, 107,

108, 110, 111, 112, 113, 114, 115, 116, 118

1,2,3,4,5,6,7,8,9, 10, 11,109, 117

Table 6: Token assignment for net 3 3 - a - 0 in Fig. 4.

3.2.3 Token Assignment

The goal of this stage is to identify which circuit nets can or cannot be affected by the

fault. In order to convey this information we associate with every net a Boolean token.

This token is TRUE if and only if there exists a path from ns to any PO which passes

through this net. These tokens can be computed by a single forward pass through

the circuit. Table 6 shows the Boolean token assignment for our example.

3.3 Propagation Phase

In this phase we sensitize a single path from net nf to a PO, however, other paths

may also get sensitized. In a manner analogous to DALG [18] we use test cubes whose

entries reflect the current values of all nets during any stage of test generation. The

entries of any test cube, tck, are elements of our 16-valued system.

We initialize this phase by constructing tc, in the following manner:

1. Set nets n and nj to the values specified by the pdcf.

2. Assign D/lD to all nets belonging to the set D(n).

3. Set all nets with FALSE tokens, except net n, to 0/1.

4. Assign 0/1/D/D to all unassigned nets of the test cube.

In our example D(3) = {111, 112,118}, and the resulting tc, is given below where

only nets whose entries are different from 0/1 and 0/1/D/D are showi

3 3/ 111 112 118

1 D D/D D/D D/D

m.

16

For each test cube tck generated at any stage of our algorithm we find its corre-

sponding "deterministic" test cube, d{tck). We define a d(tck) as one in which no

entry can be changed without making an arbitrary choice for one or more net val-

ues. That is, all unique implications of the net values must be considered. Rules for

forward and backward implication procedures to be used in constructing d(tck) from

tck are given in Appendix A. If in any d(tcj) we have a sensitized path p, from the

fault site to any PO, then the enumeration phase is invoked. This test cube, d(tcj),

is denoted as Tf(pi). The d^c-,) for our example is shown below. Only the entries for

nets whose values are different from those in tcx are listed. In fact, for each cube that

we construct only the entries whose values are different from those in the preceding

one will be explicitly shown.

9 101 102 103 104 105 110

0 0/D 0/D 0/D 0/1/D 0/1/D 0/D/D

113 114 115 116

1/D/D 1/D/D 1/D/D 1/D/D

If d(£Ci) cannot be constructed because contradictions were encountered, then

there exists no test for the fault. Otherwise we have a sensitized path from nj to

all the FOB nets corresponding to the first FOS node (which could be n itself!)

encountered in traversing the appropriate tree of the dominator forest from n to the

root. If there is no FOS encountered, then we have a sensitized path from nj to the

PO corresponding to the root of the tree. In our example, since net 3 is an FOS we

have sensitized paths only until reaching its FOB nets.

At this point we have to select one of the FOB nets, say the FOB net from net rax

to net m2 (denoted by net mi —> m2), to extend the sensitized path. To obtain £c2 we

should sensitize all nets belonging to the set D(mi —> m2) — D(n) by intersecting their

values in d(£cj with D/D. If any empty intersection results, then the sensitized

path cannot be extended through net m2 and alternate paths should be investigated.

Note that this step implicitly performs the equivalent of the X-path check [11] while

setting up the gate outputs that should be sensitized. As stated earlier, we would then

17

construct d(tc2). If contradictions occur while constructing d(£c2), then an alternate

path must be selected. Otherwise we have a sensitized path from nf at least to the

FOB nets corresponding to the next FOS net or some PO.

There are many strategies to select a FOB to extend the sensitized path. We use

the observability measure introduced in COP [3].

A short description of this measure is given in Appendix B. In Table 7 we give

the observability values according to COP for the circuit shown in Fig. 4. Since

net 3 _> 103 for the circuit shown in Fig. 4 has the highest observability among

the observabilities of the three FOBs of net 3, we extend the sensitized path in our

example through this branch. We use D(3 -+ 103) - D(3) = {103} so that net 103

has the value D in £c2. In the resulting d(tc2) shown below we have sensitized paths

up to the FOB nets of net 112.

6 110 111 112 113 114 115 116

1 0/D D D 1/D 1/D 1/D 1/D

The process of extending the sensitized path by selecting a FOB net, constructing a

tck and its corresponding d(tck), continues until we reach a PO and have constructed

Tf(pi). If contradictions occur, then alternate paths should be investigated. If all

possible paths give contradictions, then no test exists. Note that all possible single

paths need not be explicitly investigated to arrive at this conclusion. Proceeding

with our example, we extend the sensitized path through the net 112 —>■ 114 since

observability of this branch is the highest among the observabilities of all the three

branches. Since 0(112 -> 114) - £(112) = {114,116}, the tc3 shown below results.

114 116

D D

The d(tc3) constructed from tc3 is shown below:

10 11 113 114 116 117 118

1 1 1 D D 1 D

18

Net number Observability Net number Observability

1 0.262234 105 0.065250

2 0.048937 106 0.173999

3 0.049522 107 0.182308

4 0.494403 108 0.182308

5 0.048937 109 0.486018

6 0.017738 110 0.196096

7 0.025637 111 0.261461

8 0.025637 112 0.522923

9 0.289910 113 0.276087

10 0.260536 114 0.512073

11 0.486018 115 0.512073

101 0.032625 116 0.974560

102 0.032625 117 1.000000

103 0.035475 118 1.000000

104 0.065250

Table 7: Observability for the circuit in Fig. 4.

19

We now have a sensitized path (say px) from 3/ to a PO, and thus d(tcz) is Tj{p1).

Tf(pi) represents all the constraints that must be imposed to sensitize path pt.

Since the backward implication rule does not make any arbitrary choices, there may

be gates where the output value is a proper subset of the value implied by the input

values, i.e., the input values include combination(s) that will desensitize path p2. We

define the output nets of such gates as variant nets. If a net is not variant it is

defined to be invariant. In our example the only variant net with respect to Tj(p1)

is net 112.

If there are no variant nets in Tf(pi), then we have already obtained a test for the

fault. Otherwise the enumeration phase must be invoked to determine a test.

3.4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned Pis in Tf(pi)

such that all nets are invariant and have values that are subsets of their corresponding

values in T/(p,-).

We choose an unassigned PI 1^ in Tj(pi) and assign a logic value (0 or 1) to

it, thereby creating a new test cube which we denote by tcj(pl, l). Now we find

its corresponding deterministic test cube d(tcj(pt,\)) and update its list of variant

nets (note that new variant nets may be created). However if d(tcj(pi, i)) cannot be

obtained due to some contradiction, then we complement the entry for 1^ in tcj(pt, l)

and construct its corresponding d(£c/(pt-, i)). If this also leads to a contradiction,

then there exists no test corresponding to Tf(pi). If we are successful in constructing

d(tcj(pi,i)) we now assign a logic value to some other unassigned PI 7/2, thereby

creating £c/(p,,2). As before, we must construct d(tc/(p,-, 2)) and update its list

of variant nets. This procedure is continued and we traverse the decision tree, in a

manner analogous to PODEM [11], until one of the following two conditions occurs:

• The list of variant nets corresponding to some d(tcj(pt,jj) becomes empty.

This indicates the values of the Pis in d{tcj{p-nj)) represent test(s) for the

fault.

20

• The decision tree is exhausted, i.e., no test exists.

For the sake of completeness we denote T/(p,-) as d(tc/(p,-,o)).

We now continue with our example for the fault net 3 s — a — 0 in the circuit

of Fig. 4 Thus, the algorithm must assign logic values to unassigned Pis in order to

construct a test. There are many strategies to select such a PI. In this implementation

of SIMPLE this selection is made based on the controllability measure proposed in

SCOAP [12]. A short description of how to calculate this measure is given in Appendix

B.

Our initial objective is to make net 110 an invariant net, which corresponds to

setting one of the inputs of the gate whose output is net 110 to the value 0. A PI

assignment which has a good chance of helping to achieve this objective is selected

using a backtrace procedure. The description of this procedure is taken from [6].

During the backtrace procedure, objectives are successfully transferred from gate

outputs to gate inputs until a PI is reached. This transfer of objectives is performed

using the "easy/hard" heuristic described as follows. When the current objective is

to set the output of a gate to a logic value that can be achieved by setting one of its

inputs to a controlling value (0 for AND/NAND, 1 for OR/NOR), an input which is

identified as the "easiest" to control (according to the measure being used) is chosen.

On the contrary, if such objective can only be achieved by setting all the inputs of

the gate to a non-controlling value (0 for OR/NOR, 1 for AND/NAND), then an

input which is identified as the "hardest" to control is chosen. This is done so that

an early determination of the inability to satisfy an objective will save the time that

would be wasted in attempting to set the remaining inputs of the gate. If the current

objective is the output of an XOR/XNOR gate, an input which is "easiest" to control

is selected.

In Table 8 we give the controllability values for 0 and 1 obtained using SCOAP [12]

for all the nets in the circuit of Fig. 4. Following the backtrace procedure described

above, we set net 4 to 1, obtaining £c/(p;, l):

21

Net number CY(0) CY(1) Net number CY(0) CY(1)

1 1 1 105 4 2

2 1 1 106 9 3

3 1 1 107 11 2

4 1 1 108 11 2

5 1 1 109 1 1

6 1 1 110 12 5

7 1 1 111 15 4

8 1 1 112 17 2

9 1 1 113 19 2

10 1 1 114 4 2

11 1 1 115 4 2

101 2 3 116 5 5

102 2 3 117 4 2

103 2 3 118 8 6

104 4 2 G/ 1 1

Table 8: Controllability for the circuit in Fig. 4.

22

1

We now obtain d(tcj(pi, 1)): which is shown below

102 105 106 107 108 109 115

0 0/1 0/1/D 0/1/2} 0/1/D 0 1

However, net 110 is still a variant net in d(tcf(pi, i)), so the backtrace procedure

starts again at net 110, and sets PI 5 to 0. Thus tcf(ph l) is

5

0

and d(tcf(pi, i)) is

105

0

We need to continue this PI assignment since net 110 is still a variant net in

d(£c/(pi, 2)). By continuing with the PI assignment procedure, nets 1, 2, and 8 are

set to 0 before a deterministic test cube with no variant nets is constructed. Thus,

the following test has been constructed:

123456 7 89 10 11

0011010/1001 1

4 Parallel Version

In this section we describe the approach used to parallelize our sequential implemen-

tation of SIMPLE. Assume that there are n = 2* processors available in the parallel

computer being used during simulation, where k is the number of Pis that will be

assigned in the enumeration phase.

Simulation results indicated that more than 95% of the running time of our se-

quential implementation of SIMPLE was spent in the enumeration phase. Thus we

parallelized only the enumeration phase of our algorithm.

23

In the enumeration phase we must assign logic value to the Pis. In the sequential

implementation this assignment is done one PI at a time; in the parallel version we

assign logic values simultaneously to k Pis. Thus, 2k instances are created, and each

instance is given to one processor which executes the sequential version of the algo-

rithm. The selection of the k Pis is guided by the controllability measure described

in Appendix B.l.

5 Simulation Results

Circuit

Name

Cardinality

of Cr

Undetectable

faults in Cr

Average Time

per fault (sec.)

Maximum

time (sec.)

Fault

coverage (%)

C432 518 4 1.894 339.26 99.23

C499 758 8 0.227 0.39 98.94

C880 940 0 0.299 0.41 100.00

C1355 1574 8 0.581 0.73 99.49

C1908 1879 9 0.653 1.35 99.52

C2670 2641 116 7.521 17466.20 95.61

C3540 3428 137 7.297 14237.89 96.00

C5315 5248 49 5.262 2177.70 99.06

C6288 7744 34 43.93 9878.39 99.56

C7552 7438 143 47.19 10087.19 98.08

Table 9: Experimental results for the ISCAS '85 Benchmark Circuits.

In this section we give the simulation results for the ISCAS '85 benchmark circuits.

Table 9 summarizes the results achieved on a Sun/Sparc workstation by our imple-

mentation of the sequential version of SIMPLE. In order to obtain statistics for all

of the faults, we attempt to find tests for all the faults in Cr. (Normally, fault sim-

ulation is used in conjunction with ATPG. As tests are generated, additional faults

that are detected are eliminated from consideration.) This program has found tests

24

for all detectable faults and has identified all undetectable ones. For some circuits

the number of undetectable faults given in Table 9 is different from the one given in

[19, Table 1]. This is because the reduced fault set being considered may be different.

In this table the average time per fault was obtained by dividing the total execution

time by the cardinality of Cr. The maximum time given in Table 9 is the maximum

execution time, for any fault, taken by the program either to find a test for the fault

or to identify that the fault is undetectable.

The simulation results achieved on a CM-5 (MIMD architecture) by our parallel

implementation of SIMPLE for some faults are given in figures 7 to 18. In these

figures we have plotted the time taken to find a test for these faults or to prove that

no test exists when n processors are available. We also have plotted the quantity

T\jn where T\ is the time taken by the algorithm when only 1 processor is available.

Since we have a maximum number of 32 processors, the simulation results are given

for n = 1, 2, 4, 8, 16, and 32.

6 Discussion

In this report we have given a short description of SIMPLE which is the central part

of our ATPG system. We have described the measures used in the implementation

of the sequential version of SIMPLE, and the approach used in our implementation

of the parallel version of SIMPLE. We have presented the simulation result for the

ISCAS '85 benchmark circuits.

These simulation results reveal that, even though our implementation of the se-

quential version of SIMPLE does not use any of the speed-up techniques proposed in

[2, 20], this program found tests for all detectable faults or proved that such tests do

not exist in a "reasonable" time. This is due to the strength of the 16-valued system

coupled with our forward and backward implication rules. The inclusion of these

speed-up techniques in our program would considerably reduce the search space. As

a consequence, we expect a speed-up of at least two orders of magnitude in the time

25

taken by the algorithm to find tests for hard-to-detect faults or to prove that no test

exist for undetectable faults. It is well-known that the ATPG algorithms proposed in

the literature do not lead themselves to an efficient parallel implementation. However,

the simulation results obtained using our implementation of the parallel version of

SIMPLE indicate that for hard-to-detect faults an almost linear speed-up is obtained

by this implementation. The reasons for such a speed-up are:

(i) We have parallized only the enumeration phase that is responsible for more than

95% of the runtime of our algorithm in the sequential version of SIMPLE.

(ii) There are almost no communication among the processors.

(iii) No processor is idle when the program starts to run.

Our implementation does not use processors that become idle when the program

is running. We expect an even better speed-up if we were to use the processors that

became idle to further divide the search space among them. We remark here that

any speed-up in the sequential version of SIMPLE would be reflected in the parallel

version.

26

Time (See

180.00

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

e I

•• \

\ \
q \

\

h...

parallel

linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 7: CM-5 Simulation Result for FOB net (167-^246) s-a-1 in cc432.

27

Time (See.)

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

"-- parallel
- linear speed-up (Tl/n)

 1 \

* \

v.
\

Ht

--....

J Number of Processors
0.00 10.00 20.00 30.00

Figure 8: CM-5 Simulation Result for FOB net (216-^246) s-a-l in cc432.

28

Time (See.)

180.00

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

11

:\
o \

*. \

\ \
*, \

q . >

\

v.fc

1

parallel

iinear speed-up (fl/n)

0.00 10.00 20.00
Number of Processors

30.00

Figure 9: CM-5 Simulation Result for FOB net (237->246) s-a-1 in cc432.

29

Time (See.)

OQft Df\
~ parallel

- linear speed-up (Tl/n) ZoU.UU 1

ZoU.UU

Z4U.UU

ZUU.UU

1 QC\ P\T\ lou.UU 1
loU.UU 1
14U.UU P\

120.00
\\

100.00

80.00

*\
60.00

40.00

20.00

\\
\\

ta.%%
■-... -a

Number of Processors 0.00

0.00 10.00 20.00 30.00

Figure 10: CM-5 Simulation Result for FOB net (1383->1632) s-a-1 in cc2670.

30

Time (See.)

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

11

I
I

r-

\ *•*•.
__ '**'"■.:■

- parallel

— linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 11: CM-5 Simulation Result for FOB net (1337-^1633) s-a-l in cc2670.

31

Time (See.)

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

1

1

\

1
1

V

^^

- parallel
g.. -.

-- linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 12: CM-5 Simulation Result for FOS net 1942 s-a-0 in cc2670.

32

Time (See.

105.00

100.00

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0

)

_ i

 *^

"*■&

 □

parallel

linear speed-up (Tl/n)

Number of Processors
00 10.00 20.00 30.00

Figure 13: CM-5 Simulation Result for FOB net (137-+1859) s-a-l in cc5315.

33

Time (See.)

105.00

100.00

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

B—I

 ± — ^^

'&..._ ■.

***&
 o

parallel
linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 14: CM-5 Simulation Result for FOB net (1752-^1859) s-a-1 in cc5315.

34

Time (See.)

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

■

i

1

•.

u.

I

^SsN. °D.

-"^"""••-.

~ parallel
~ linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 15: CM-5 Simulation Result for FOB net (2590-^3055) s-a-1 in cc5315.

35

Time (See.)

1 <n nn 1 JU.UU

i/in nn 1<+U.UU

1 in nn 1 JU.UU

i Tfi m 1ZU.UU

1 m nn 11U.UU

1 fvi nn 1UU.UU

on r\T\ yu.uu

on nn oU.UU

7A nn

!

/u.uu

^n nn OU.UU

^n nr\
\\

JU.UU

/in nn
l\

4U.UU

an nn

1 k-

JU.UU

on nn -
\ \

zu.UU

in (v\

--...
1U.UU

n nr\ - U.UU

parallel
linear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 16: CM-5 Simulation Result for FOB net (2415—»3137) s-a-1 in cc7552.

36

Time (See.)

440.00

420.00

400.00

380.00

360.00

340.00

320.00

300.00

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

i

- j

— j

\ * T \

X "•-

* "*'o

^— ■ ■

- parallel
- linear speed-up (Tl/n)

0.00 10.00
Number of Processors

20.00 30.00

Figure 17: CM-5 Simulation Result for FOB net (2415^3142) s-a-1 in cc7552.

37

Time (See.)

420.00

400.00

380.00

360.00

340.00

320.00

300.00

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

I

5l

*\ \\

'•\

*&^"- -.^"""-~^^^

parallel
iinear speed-up (Tl/n)

Number of Processors
0.00 10.00 20.00 30.00

Figure 18: CM-5 Simulation Result for FOB net (3786-^3866) s-a-1 in cc7552.

38

Appendix

A Construction of Deterministic Test Cubes

In a d(tck) all deterministic implications (i.e. making no arbitrary choices) of all

entries of the test cube tck are fully considered.

To construct d{tcx) from tcx we perform backward and forward implications of

all nets whose values in tcx are different from 0/1 and 0/1/D/D and all other nets

whose values change during this implication process. In the general case, when we

are constructing d(tck) from tck-, we start by considering the forward and backward

implications of the nets whose values in tck are different from those in the last suc-

cessfully constructed deterministic test cube. During the construction of d(tck) from

tck, if a backward or forward implication request results in a new value L- for any

net mj of the circuit, then we should update the corresponding net entry L3 by set-

ting it to Lj Pi L'j. If this intersection yields the empty set, then d(tck) cannot be

constructed.

In order to obtain d(tck) the process of forward and backward implications con-

tinues until no more changes occur in the values associated with any net. Note that

this process is guaranteed to terminate in a finite number of steps because we are

performing set intersections on finite sets.

The rules for constructing deterministic test cubes must include the provision for

appropriately handling the values of nets associated with fanout points. We now

present the rules for forward and backward implication.

A.l Forward Implication

The process of forward implication of the values associated with every net is done with

the help of Tables 3, 4, and 5. These tables are a generalization of the truth tables

of the respective gates. For gates with more than two inputs the method adopted is

similar to that used by Akers [1]. We view every gate as being constructed out of

39

two-input gates and use the existing values at the inputs of a gate to generate a new

value for the output. An re-input (re > 2) gate is decomposed into a cascade of re — 1

two-input gates, as shown in Fig. 19. If the n-input gate is a NAND (NOR) gates,

then Gi,G2i-.-,Gn-2 are AND (OR) gates and G„_i (which sources the output) is

a NAND (NOR) gate. This decomposition is performed only for the propagation of

logic values; faults are considered only on the n + 1 signal lines associated with the

original re-input gate.

Note that the three tables are sufficient because OR, NOR, and NAND functions

can be derived by appropriately using Tables 3 and 4, and Tables 4 and 5 can be used

to generate the XNOR function.

Suppose we are performing forward implications due to change(s) in input(s) of

a gate G whose output is net m. Let Lo be the "old" set of values associated with

net m in the test cube prior to forward implication being performed. Let LN be the

"new" value obtained at net m by using the new values of the inputs of G. Net m is

then set to Lo fl LN unless Lo fl L^ = 0, which would imply a contradiction. Four

other situations are possible:

1. Lo = LN- No further action is needed for this forward implication.

2. Lpj C Lo (proper subset). We now have to consider the forward implication of

the value of Ljy at net m on all gates driven by G.

3. Lo C LN. We now have to perform a backward implication of the value Lo at

net m. This may result in further changes in the inputs of gate G.

4. Lo % LN and L^ $Z Lo- Both forward and backward implications of the value

Lo H Lj\r at net m should be performed.

A.2 Backward Implication

The process of backward implication involves determining the changes required at

the inputs of a gate in order to satisfy a requested change at the output. A change in

40

*

**

0 1 D D

0 O/l/D/D 0 0 0

1 0 1 D D

D 0/D 0 1/D 0

D 0/D 0 0 1/D
* R .equested Out put

** Existing value at one input

Table 10: Backward Implication for a 2-input AND gate.

the value of a net means that one or more of the possible values associated with the

net has been deleted. In that sense an input change can be made only if the deleted

value can never be used with the existing values at the other inputs to generate any

of the requested output value(s).

A general set of backward implication rules can be derived in terms of the input

values and the requested output value. However, in a manner similar to that presented

in [1] we consider each multiple-input gate as a cascade of two-input gates. The

backward implication rules for a two-input AND gate is shown in Table 10.

Note that the element 0 has been included in this table to detect an unsatisflable

backward implication request. The complete table for all 15 non-0 values is obtained

by the set union operation. The resulting table is equivalent to that proposed by

Akers [1]. To perform backward implication for a two-input AND gate, we reference

the table using the requested value at the output and the existing value at one input

to generate the value of the other input. Since the XOR gate is linear, Table 5 can

be used for backward implication also. Thus Tables 4, 5, and 10 can be used to

perform backward implication for any two-input gate. Regardless of the type of gate

in question, the value generated by the appropriate table must be intersected with

the existing value of the input to generate the new value of the input. Analogously,

the new value of the input and the requested value of the output must now be used

41

to generate the new value of the other input. For example, consider a two-input gate

whose input values are Lx and L2. If the requested value of the output of the gate is

LG, then we use LG and Lx to determine the new value L'2 of the second input and

then L'2 and LG to determine the new value L,\ of the first input.

As stated before, any gate with more than two inputs is represented as a cascade

of two-input gates. Consider an n-input gate G represented as a cascade of n - 1

two-input gates Gu G2, ■ ■ ■, Gn-2 and G„_i, with net numbers as shown in Fig. 19.

Assume that the values at nets 1,2,..., n are Xu X2, ■ ■ ■, Xn respectively. We first

use forward implication of these values to compute Yu Y2, ■ ■ ■, K-2, the values of nets

n + l,n + 2,... ,n + (ra-2) respectively. Then using the value Z, which is the required

value at the output of gate G, we apply the backward implication rules for gate Gn-\

to obtain Zn_2 and X'n, the new values of nets n + {n - 2) and n respectively. Having

done that, we proceed backwards and apply the backward implication rules for all

the gates, one at a time, ending with gate G\. Since the binary operation represented

by any logic gate is associative, the order in which the inputs X.t are cascaded is

irrelevant.

It is shown in [2] that the above procedure will stabilize in a single pass, unlike

the approach followed in [1] which may require several passes.

B Measure for Controllability and Observability

In this appendix we give a short description of the controllability and observability

measure used in our implementation of SIMPLE.

The controllability measure used was that proposed in SCOAP [12], and the ob-

servability in COP [3]. The descriptions of these measures are taken from [6].

B.l Controllability

With every net n SCOAP associates two integers denoted by C°{m) (O-controllability)

and C\m) (1-controllability). For every PI, we set C°{PI) = Cl{PI) = 1. Now,

42

n + (n-1)

1

Gi ?. n+1

G2 * n+2

•
n + (n-2)

n + (n-1)

Figure 19: Gate decomposition.

43

gate type C°(m) Cl{m)

AND 1+ min {C°(ij)}
J€{1,2 r,}L

OR 1+ min {C\ij)}
j£{l,2,...,n}

XOR\ 1 + min{C°(.'i) + C°(h), C\ii) + C\i2)} 1 + min{C°(j'i) + C1^), C^ti) + C°(i2)}
t Only for 2-input XOR gate

Table 11: Rules to calculate the controllability in SCOAP.

let G be a gate with n inputs nets iui2,...,in, and output net m. Table 11 shows

how to calculate C°{m) and C1 (???.) as a function of the O-controllabilities and 1-

controllabilities of these n inputs.

Finally, if net mi is a fanout branch whose corresponding stem is net m, then

C°(mi) = C°(m) and Cl{mi) = Cl{m).

For any two nets m^ and m2, if C°(???i) < C°(m2) (C,1(??21) < C1(m2)) we say

that mi is "easier" to control then net m2 with respect to logic value 0(1). Thus,

this measure of controllability increases with the difficulty of controlling a net.

B.2 Observability

To define the observability measure introduced in COP we first need to define the

controllability measure that it is based on. Both measures are based on a simplistic

probabilistic approach. The description of these measures is taken from [6].

For every PI, we set C°(PI) = Cl{PJ) = 0.5. Also, for any net m, C\m) =

1 — C°(m). Let G be a gate with inputs nets ?'i, ?'2,..., in and output net m. To

express C°(m) in terms of C°{i3) and C1^), for j G {1,2, ...,??}, we first define A^°

as the set of logic patterns that, when applied to the inputs of G, set net rn to the

logic value 0.

For a = (a'i.a-i, ...,an) G N° define ;jj, 1 < j < n as follows:

44

Pi = <
C°{ii), ifa,- = 0

C1^), ifai = l.

C°(m) can now be denned in terms of pi,P2, • ■•■,Pn as follows:

C°(m)= £ f[pr

If net mi is a fanout branch whose corresponding stem is net m, then C°(mi) =

C°(m) and C^mi) = C\m).

Now, we are in the position of defining OB(m), the observability measure of net

m. For every PO we define OB(PO) — 1. Now consider gate G. Let Sj be the set of

logic patterns that, when applied to the inputs ii,^, •■-, ij-i,ij+i, ■•■,in, sensitize the

net m to a change in the input ij. Then

OB(ij) = OB(m) x Y: f[pt-
B&S, e=i

Finally, if net mi, ?ri2, ...,mr are fanout branches corresponding to fanout stem m',

then

OB(m') = l-fl(l-OB(me)).
1=1

For any two nets mi and m2, if OB (mi) > OB(m2), then net mi is "easier"

to observe than net m2. Thus, this measure of observability increases with the

ease of observing a net.

45

References

[1] Sheldon B. Akers, "A Logic System for Fault Test Generation," IEEE Transac-

tions on Computers, vol. c-25, pp. 620-630, June 1976.

[2] A. M. Ali and C. R. P. Hartmann, "SIMPLE: A New Approach to Combinational

Circuit Testing," Technical Report, Syracuse University, Syracuse, NY, 1989.

[3] F. Brglez, P. Pownall, and R. Hum, "Applications of Testability Analysis: From

ATPG to Critical Path Tracing," IEEE International Test Conference, pp. 705—

712, 1984.

[4] Franc Brglez and Hideo Fujiwara, "A Neutral Netlist of 10 Combinational Bench-

mark Circuits and a Target Translator in Fortran," IEEE International Sympo-

sium on Circuits & Systems, pp. 663-698, June 1985.

[5] Charles W. Cha, William E. Donath, and Füsun Ozgüner, "9-V Algorithm for

Test Pattern Generation of Combinational Digital Circuits," IEEE Transactions

on Computers, vol. c-27, pp. 193-209, March 1978.

[6] S. J. Chandra and J. H. Patel, "Experimental Evaluation of Testability Measures

for Test Generation," IEEE Transactions on Computer-Aided Design, vol. 8,

no. 1, pp. 93-98, January 1989.

[7] Wu-Teng Cheng, "Split Circuit Model for Test Generation," Proceedings of the

25t/l ACM/IEEE Design Automation Conference, pp. 96-101, 1988.

[8] W.H. Debany, K.A. Kwiat, H.B. Dussault, M.J. Gorniak, A.R. Macera, and D.E.

Daskiewich, "Fault Coverage Measurement for Digital Microcircuits," MIL-STD-

883 Test Procedure 5012, US Air Force Rome Laboratory (RL/ERDA), Griffiss

AFB, NY 13441, 18 December 1989 (Notice 11) and 27 July 1990 (Notice 12).

46

[9] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algo-

rithms," IEEE Transactions on Computers, vol. c-32, pp. 1137-1144, December

1983.

[10] H. Fujiwara and S. Toida, "The Complexity of Fault Detection: An Approach

to Design for Testability," Proceedings of the YLth International Symposium on

Fault Tolerant Computing, pp. 101-108, June 1982.

[11] Prabhakar Goel, "An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits," IEEE Transactions on Computers, vol. c-30, pp.

215-222, March 1981.

[12] L. H. Goldstein and E. L. Thigpen, "SCOAP: Sandia Controllabil-

ity/Observability Analysis Program," Proceedings of the 17i/l ACM/IEEE Design

Automation Conference, pp. 190-196, 1980.

[13] O. H. Ibarra and S. K. Sahni, "Polynomially Complete Fault Detection Prob-

lems," IEEE Transactions on Computers, vol. c-24, pp. 242-259, March 1975.

[14] Dong-Liang Jan and Kuo-Kuei Ho, "Translator for ISCAS '85 Netlist Format,"

Private Communication, June 1991.

[15] Tom Kirkland and M. Ray Mercer, "A Topological Search Algorithm for ATPG,"

Proceedings of the 2\th ACM'/IEEE Design Automation Conference, pp. 502-508,

1987.

[16] P. Muth, "A Nine-Valued Circuit Model for Test Generation," IEEE Transac-

tions on Computers, vol. c-25, pp. 630-636, June 1976.

[17] Janusz Rajski and Henry Cox, "A Method of Test Generation and Fault Diagno-

sis in Very Large Combinational Circuits," IEEE International Test Conference,

pp. 932-943, 1987.

47

[18] J. P. Roth, W. G. Bouricius, and P. R. Schneider, "Programmed Algorithms to

Compute Tests to Detect and Distinguish Between Failures in Logic Circuits,"

IEEE Transactions on Computers, vol. c-16, pp. 567-579, October 1967.

[19] Michael H. Schulz and Elisabeth Auth, "Advanced Automatic Test Pattern

Generation and Redundancy Identification Techniques," Proceedings of the 18th

Symposium on Fault-Tolerant Computing, pp. 30-35, 1988.

[20] Michael H. Schulz, Erwin Trischler, and Thomas M. Sarfert, "Socrates—A Highly

Efficient Automatic Test Pattern Generation System," Proceedings of the IEEE

International Test Conference, pp. 1016-1026, 1987.

[21] R. Tarjan, "Finding Dominators in Directed Graphs," SIAM Journal of Com-

puting, vol. 3, no. 11, pp. 62-89, 1974.

48

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

*U.S. GOVERNMENT PRINTING OFFK

